4.6W 双路音频功率放大器 D6282

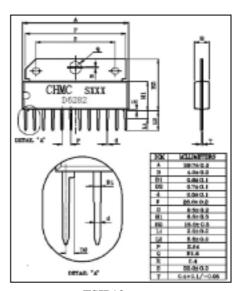
概述

D6282 是双路音频功率放大集成电路,內置温度过热保护电路、功率调整开关。适用于便携式收录机作音频功率放大。 该电路采用 12 脚单列直插封装。

主要特点

● 输出功率大

P_{OUT}=2.5W/CH(典型)


 $(Vcc=9V,R_L=4,f=1kHz,THD=10\%)$

P_{OUT}=4.6W/CH(典型)

 $(Vcc=12V,R_L=4,f=1kHz,THD=10\%)$

- 开机噪音小;
- 静态电流小; I_{CCQ}=19mA(典型) (Vcc=9V,V_{IN}=0)
- 软嵌位
- 内置热保护电路
- 最佳电源电压 9V、12V
- 工作电源电压范围: Vcc=6~15V

外形图

FSIP12

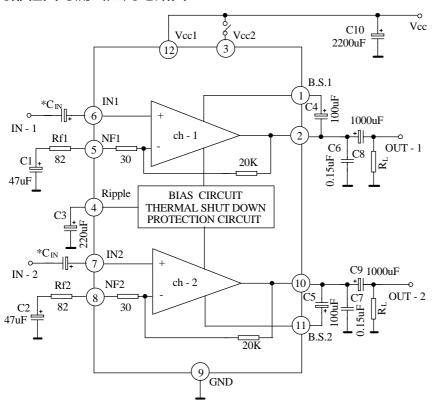
引出端功能符号

引出端序 号	功能	符号	引出端 序号	功能	符号		
1	自举 1	B.S.1	.1 7 输入2		IN2		
2	输出 1	OUT-1	8	反馈 2	NF2		
3	电源 2	V_{CC2}	9	功率地	GND		
4	纹波抑制	Ripple	10	输出 2	OUT-2		
5	反馈 1	NF1	11	自举 2	B.S.2		
6	输入1	IN1	12	电源 1	V_{CC1}		

极限值 (Ta=25):

电 参 数	符号	范 围	单 位
电源电压	Vcc	20	V
输出电流(每通道)	I _{o(peak)}	2.5	A
功耗	P_{D}	12.5	W
工作温度	T_{opr}	-20~75	
储存温度	$T_{ m stg}$	-55~150	

电特性(若无特殊说明,Vcc=9V,f=1kHz,Rg=600 ,R_L=4 ,Ta=25)


电参数	符号	测试条件	最小值	典型值	最大值	单 位	
静态电流	I_{CCQ}	$V_{IN}=0$	-	19	45	mA	
制出切率 -	P _{OUT(1)}	THD=10%	2.0	2.5	-	W	
	P _{OUT(2)}	THD=10%,V _{CC} =12V	-	4.6	-	VV	
失真度	THD	P _{OUT} =1W/CH	-	0.25	1.0	%	
电压增益	$G_{V(1)}$	Rf=82 ,V _{OUT} =0dBm	43	45	47	dB	
	$G_{V(2)}$	Rf=0,V _{OUT} =0dBm	-	56	-		
输入电阻	R _{IN}	-	-	30	-	k	
输出噪声	V_{NO}	Rg=10k , BW=20Hz~20kHz	-	0.3	1.0	mV_{rms}	
纹波抑制比	R.R	$Rg=600$, $V_{RIP}=0.2Vrms$, $f_{HIP}=100Hz$	-	54	-	dB	
通道隔离度	C.T	Rg=600 ,Amp1↔2, V _{OUT} =0dBm,f=1kHz	-	45	-	dB	
输入失调电压	V6,V7	-	-	20	60	mV	

管脚直流电压值(典型值)(Vcc=9V, Ta=25)

管 脚 号	1	2	3	4	5	6	7	8	9	10	11	12
直流电压值(V)	8.2	4.5	Vcc	8.9	0.6	0.01	0.01	0.6	GND	4.5	8.2	Vcc

^{*} 脚与 VCC 连接。

内部框图与测试应用电路图

注:此电路在应用中可以不用耦合电容 ($C_{
m IN}$),如果音量电位器产生的噪声大于此电路的输入 失调电压,则需要使用耦合电容 ($C_{
m IN}$)。

应用方法与说明

1. 电压增益的调节

电压增益 G_V 是由图 1 中 R1、R2 与 Rf 所决定的:

 $G_V=20\log ((Rf+R1+R2)/(Rf+R1))$

当 Rf=0

G_V=56dB (典型)

当 Rf=82

G_V=45dB (典型)

可以通过增加 Rf 来减小增益,不过,由于增加

反馈可能引起振荡,所以一般增益用在 40dB 左右。

内置热保护电路用于因散热不足而温度上升时防止电路损坏。工作温度设成散热片的温度 175 (典型),达到或超过这个温度就关断内部偏置而防止电路损坏。

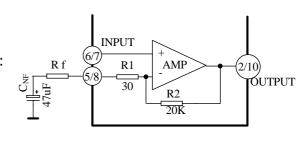


图 1

3. 输入部分

IC 输入电路如图 2 所示。

PNP 管 Q1 是为了保证在输入电路中无输入耦合电容时该电容也可正常使用。

由于在输入脚(6和7脚),最大将产生60mV失调电压。所以只有当音量电位器产生的噪声电压小于失调电压时才可去掉输入耦合电容。

为了防止音量电位器产生的噪声电压的影响,需要串联输入电容 $C_{
m IN}$ 来隔直。

4. 防振措施

为了防止振荡可在输出端与地间加电容 C_6 和 C_7 , 它一般采用具有良好温度性能与高频性能的

Q2 Q3

INPUT

30

Pre - GND

20K

to DRIVER

to BIAS

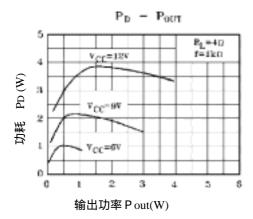
R f

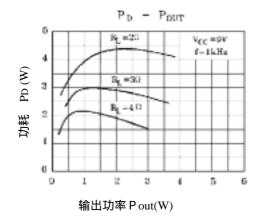
≟ 47uF

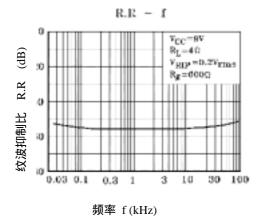
聚酯薄膜电容。因为此类电容的电特性易受温度影响,所以在使用之前必须经过温度测试,检测振荡允许值。另外,电解电容的安装位置对振荡有很大的影响,可用 C_{10} 将 V_{CC} 与最近的功率地连接。在这种情况下,当减小增益时易引起振荡,所以在选择 C_{10} 的容量、种类及安装位置时应当十分注意。

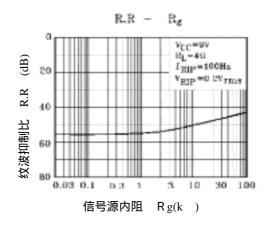
5. 电源 ON/OFF 开关

脚有一 ON/OFF 开关,输出功率随 脚电压 而改变,当 脚电压与 12 脚电压相同时, 输出功率如电参数表所示。


输出功率如电参数表所示。 6.输入电压 图 2


当大信号输入时,可产生削波,拐点是 $V_{\rm IN}$ =300mVrms(典型): Vcc=9V, f=1kHz, R_L =4 ;此种现象必须引起重视。


7. 地线


接地脚要把功率地与前置地连在一起,否则会引起失真、串音等。


特性曲线

